Monday, 27th November 2023 # Exceptional copper and zinc grades confirmed at the Tempest Prospect, Storm Copper Project, Canada - 38.2% Cu and 30.8% Zn in assays for geochemical sampling of surface gossan rocks at the underexplored Tempest Prospect - Prospective gossans have been mapped for more than 4km at Tempest, which is located 40km south of the Storm Copper targets drilled in 2023 - A ground electromagnetic (EM) survey at Tempest has defined a series of EM anomalies that coincide with the high-grade copper and zinc gossans, providing high priority drill targets for the 2024 field program - Magnetic data indicates that Tempest may be located on a major structural unconformity a geological setting that is highly prospective for base metals - The impressive results at Tempest further highlight the large-scale regional potential within the Project area American West Metals Limited (**American West** or **the Company**) (ASX: AW1 | OTCQB: AWMLF) is pleased to report results from exploration activities at the Tempest Prospect, located within the Storm Copper Project (**Storm** or **the Project**) on Somerset Island, Nunavut, Canada. ### Dave O'Neill, Managing Director of American West Metals commented: "We are pleased to report exciting results from the exploration activities carried out this year at the Tempest Prospect. Exploration at the underexplored Tempest area was a priority of the 2023 regional exploration program due to historical sampling of copper gossans that yielded grades of more than 32% Cu. "A focused mapping, sampling and electromagnetic program was carried out over the prospect with the aim of obtaining a better understanding of the extent and nature of the known copper mineralisation. The program successfully extended the prospective strike of gossans and EM anomalies to over 4km and has returned exceptional grades of both copper and zinc, with assays up to 38% Cu and 30% Zn. "Follow-up exploration is planned to test these numerous EM anomalies and gossans including a larger geochemical sampling program, follow-up moving loop EM and drilling of priority targets. "We look forward to reporting further news from Storm in the coming weeks as we finalise the maiden MRE for Storm, progress the beneficiation and other development studies, and prepare for the next drilling and field program in early 2024." Figure 1: Zinc and lead-rich gossan in outcrop from the Tempest Prospect, Storm Project, Nunavut. Sample ID Y010803. #### HIGH-GRADE COPPER AND ZINC CONFIRM OUTSTANDING EXPLORATION OPPORTUNITY The Tempest Prospect is located approximately 40 kilometres south of the known copper discoveries at Storm (Figure 6). The area was discovered through historical rock and soil sampling which defined copper gossans over 250m, with assays returning copper grades up to 32% Cu. The geology of the area is interpreted to contain the southern extension of the highly prospective Storm copper horizon, overlapping much older Proterozoic rocks to the west. This geological setting and the interpreted unconformity between two main geological terranes are interpreted to be highly prospective for base metal mineralisation. A small reconnaissance sampling and field mapping program during the 2023 field season was aimed at expanding the understanding of the area. The mapping revealed a series of gossans that are significantly more extensive than originally defined. The gossans have now been traced over 4km of strike to the north and south of the original Tempest Prospect, significantly upgrading the exploration potential of the area. Seven samples were taken of gossanous rock outcrop and float, and one was taken from exposed gneiss basement. A number of gossanous samples contain highly anomalous base metals with copper grades up to 38.2% Cu and zinc grades 30.8% Zn. The gossan samples at Tempest differ in composition from those typically found at Storm with higher abundances of other metals including zinc, lead and gold. The Storm gossans generally contain only copper +/- silver, with only trace abundances of zinc and lead. This may indicate that the gossans at Tempest are derived from a different style, or combination of styles of mineralisation. Many areas within Tempest remain unexplored and further, more detailed, and extensive geochemical sampling is required to fully define the highest priority target areas. | Sample ID | Sample Type | Cu % | Zn % | Pb % | Fe % | Ag g/t | Au ppb | |-----------|----------------------------|------|------|------|------|--------|--------| | Y010801 | Gossan | 0.18 | 30.8 | 0.05 | 22.8 | 9 | 4 | | Y010802 | Gossan | 0.56 | 0.36 | 0.12 | - | 2 | - | | Y010803 | Gossan | - | 1.6 | 0.3 | - | 1 | - | | Y010804 | Malachite/chalcocite float | 38.2 | 0.17 | 0.1 | 5.8 | 3 | 277 | | Y010811 | Gossan/Ironstone | - | - | - | 11.8 | 2 | 53 | | Y010812 | Gossan/Ironstone | - | 0.01 | - | 28.3 | 0.5 | 2 | | Y010813 | Gossan | 0.16 | - | - | 45.7 | 3 | 8 | | Y010814 | Basement/gneiss | - | - | - | 3.7 | 0.5 | - | Table 1: Tempest rock sample descriptions and geochemistry from the 2023 program. Figure 2: Aerial view of the northern gossan at the Tempest Prospect. This section of the prospective trend has outcropping gossans that can be traced for 600m (brown-rust coloured). Figure 3: Photo of the southern area of the Tempest copper and zinc gossans looking north. The brown-red rust-coloured gossans are indicative of potential base metal mineralisation below surface and can be traced for over 4km along strike. Aston Bay CEO, Tom Ullrich, is seen at the right of the photo for scale. Figure 4: Plan view map of the Tempest Prospect showing the mapped gossans and geochemical sampling points, overlaying aerial photography. Figure 5: Plan view map of the Tempest Prospect showing the mapped gossans and geochemical sampling points, overlaying TDEM image (late time conductivity – Gate 6) and aerial photography. #### **GROUND GEOPHYSICS - NUMEROUS EM ANOMALIES IDENTIFIED** A ground Loupe Electromagnetic (TDEM) and magnetic survey was completed over the Tempest area during August 2023 to aid with mapping the stratigraphy and to define potential targets for further exploration work. Approximately 9km² was covered during the survey (Figure 4 & 5). Loupe TDEM is a man-portable, quick, and inexpensive technique used to assess the conductivity of an area, particularly where there is significant outcrop and little to no weathering. The system is designed to measure electrical conductivity in the near-surface (generally between 20-30m depth) at high resolutions. The TDEM survey has defined a series of conductive anomalies that lie along the strike of the stratigraphy and are coincident with the copper/zinc gossans in a number of areas (Figure 5). The conductors are localised and modelling of the data estimates that they are potentially steeply dipping. The relatively short strike length of the conductive features is positive and suggests that the anomalies may not be related to conductive stratigraphic horizons such as black shales, graphite, or iron sulphides. A ground magnetic sensor was also used during the survey over the northern and southern areas of Tempest to supplement the existing airborne magnetic data. The results of the TDEM are still being assessed, but are highly encouraging with multiple anomalies and gossans untested. Follow-up surveys will include high-powered Moving Loop EM (MLEM). #### **GEOLOGICAL SETTING AND BASE METAL POTENTIAL** While the geological understanding of the Tempest area is continuing to evolve with ongoing exploration, the current interpretation of the geological and geophysical data of the southern Storm Project area indicates the presence of both the extensive Storm Copper horizon and Proterozoic aged basement rocks. Both of these units are highly prospective for base metals. The magnetics of the Tempest area are characterised by strong and linear, north-south orientated magnetic features that are interpreted to represent the Proterozoic basement rocks (Figure 6). The interpretation suggests that the basement rocks in this area are close to surface (and locally outcrop), and are covered by a thin veneer (<200m) of Storm-style, sedimentary basin stratigraphy. In contrast, the depth-to-basement modelling of the magnetic data indicates an over 2,000m thick sequence of sedimentary rock in the Storm area. The Proterozoic rocks are interpreted to be bounded by steeply-dipping horst and graben faults with significant vertical displacement. The proximity of the two terranes in the Tempest area marks a major structural and tectonic boundary. The unconformable contact between the two geological terranes is highly prospective, with the basement rocks being an important potential source of metals and the contact a zone of high permeability for mineralising fluids. The metal association of the Tempest gossans and geological setting indicates that the area has the potential for a unique mix of Storm and Seal-style mineralisation (i.e., close coupling of the prospective zinc and copper stratigraphic horizons), as well as Volcanogenic Massive Sulphide (VMS) and SEDEX style base metal deposits. The discovery of VMS base metal mineralisation in the Proterozoic rocks at Tempest would be the first of its type within the Project area, and confirm the prospectivity of the Proterozoic basement. Figure 6: Map of the Project area showing the known copper and base metal deposits/prospects overlaying magnetics (Airborne GeoTEM – hotter colours indicate higher magnetic intensity). The Tempest Prospect is located approximately 40km south of Storm Copper. #### **FORWARD PROGRAM** - Ore sorting, beneficiation and flow sheet development are in progress on a range of ore types from the 2750N and 4100N Zones. - Resource modelling and estimation work on the Storm Copper mineralisation is continuing. Given the success of the resource drilling during 2023, and outstanding exploration discoveries yet to be drilled out and
expanded, extra time has been required to assess a number of potential mining and development scenarios. - A report on the Storm Project summer environmental program is being compiled. - Logistics and exploration planning for the 2024 exploration program is continuing. This announcement has been approved for release by the Board of American West Metals Limited. Investability ### For enquiries: Dave O'Neill Dannika Warburton Managing Director Principal doneill@aw1group.com info@investability.com.au + 61 457 598 993 +61 401 094 261 #### Forward looking statements American West Metals Limited Information included in this release constitutes forward-looking statements. Often, but not always, forward looking statements can generally be identified by the use of forward-looking words such as "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "continue", and "guidance", or other similar words and may include, without limitation, statements regarding plans, strategies and objectives of management. Forward looking statements inherently involve known and unknown risks, uncertainties and other factors that may cause the Company's actual results, performance, and achievements to differ materially from any future results, performance, or achievements. Relevant factors may include, but are not limited to, changes in commodity prices, foreign exchange fluctuations and general economic conditions, the speculative nature of exploration and project development, including the risks of obtaining necessary licenses and permits and diminishing quantities or grades of reserves, political and social risks, changes to the regulatory framework within which the Company operates or may in the future operate, environmental conditions including extreme weather conditions, recruitment and retention of personnel, industrial relations issues and litigation. Forward looking statements are based on the Company and its management's good faith assumptions relating to the financial, market, regulatory and other relevant environments that will exist and affect the Company's business and operations in the future. The Company does not give any assurance that the assumptions on which forward looking statements are based will prove to be correct, or that the Company's business or operations will not be affected in any material manner by these or other factors not foreseen or foreseeable by the Company or management or beyond the Company's control. Although the Company attempts and has attempted to identify factors that would cause actual actions, events, or results to differ materially from those disclosed in forward looking statements, there may be other factors that could cause actual results, performance, achievements, or events not to be as anticipated, estimated or intended, and many events are beyond the reasonable control of the Company. Accordingly, readers are cautioned not to place undue reliance on forward looking statements. Forward looking statements in this announcement speak only at the date of issue. Subject to any continuing obligations under applicable law or any relevant stock exchange listing rules, in providing this information the Company does not undertake any obligation to publicly update or revise any of the forward-looking statements or to advise of any change in events, conditions or circumstances on which any such statement is based. #### **Competent Person Statement** The information in this report that relates to Exploration Results for the Storm Copper and Seal Zinc-Silver Projects is based on information compiled by Mr Dave O'Neill, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy. Mr O'Neill is employed by American West Metals Limited as Managing Director, and is a substantial shareholder in the Company. Mr O'Neill has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr O'Neill consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. ### **ABOUT AMERICAN WEST METALS** AMERICAN WEST METALS LIMITED (ASX: AW1) is an Australian clean energy mining company focused on growth through the discovery and development of major base metal mineral deposits in Tier 1 jurisdictions of North America. Our strategy is focused on developing mines that have a low-footprint and support the global energy transformation. Our portfolio of copper and zinc projects in Utah and Canada include significant existing resource inventories and high-grade mineralisation that can generate robust mining proposals. Core to our approach is our commitment to the ethical extraction and processing of minerals and making a meaningful contribution to the communities where our projects are located. Led by a highly experienced leadership team, our strategic initiatives lay the foundation for a sustainable business which aims to deliver high-multiplier returns on shareholder investment and economic benefits to all stakeholders. ### JORC Code, 2012 Edition – Table 1 ### **Section 1 Sampling Techniques and Data** (Criteria in this section apply to all succeeding sections.) | Criteria | JORC Code explanation | Commentary | |------------------------|--|--| | Sampling
techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | Diamond Drilling Sampling and geological intervals are determined visually by geologists with relevant experience The intervals of the core that are selected for assaying are marked up and then recorded for cutting and sampling. The mineralisation at the Storm and Seal display classic features and is distinctive from the host and gangue lithologies All intercepts are reported as downhole widths Reverse Circulation Drilling Sampling and geological intervals are determined visually by geologists with relevant experience The sampling interval is 5ft. The mineralisation at the Storm and Seal display classic features and is distinctive from the host and gangue lithologies All intercepts are reported as downhole widths Fixed Loop Electromagnetics (FLEM) The Electromagnetic (EM) surveys were completed by Initial Exploration Services, Canada. The surveys were completed using a
Geonics TEM57 MK-2 transmitter with TEM67 boosters. An ARMIT Mk2.5 sensor and EMIT SMARTem 24 receiver were used to measure and collect vertical (Z) and horizontal (X and Y) components of the B-Field and its partial derivative dB/dt. The surveys were completed in conventional Fixed Loop (FLEM) configuration, with sensors placed both in and out of the loops. | | Criteria | JORC Code explanation | Commentary | |--------------------------|--|--| | | | Moving Loop Electromagnetics (MLEM) The Electromagnetic (EM) surveys were completed by Geophysique TMC, Canada. The surveys were completed using dual Crone PEM transmitters - 9.6kW. Crone surface coil sensors and CRONE CDR4 24 receivers were used to measure and collect vertical (Z) and horizontal (X and Y) components of the secondary field dB/dt. The surveys were completed using both an inloop and 'slingram' (MLEM) configuration, with sensors placed both in and out of each loop. | | | | Loupe Electromagnetics (TDEM) The Electromagnetic (EM) surveys were completed by APEX Geoscience, Canada. The surveys were completed using an EMIT Loupe TDEM system and GEM GSM-19W Overhauser magnetometer. The Loupe system incorporates a 3-component coil sensor with 100kHz bandwidth and fast-switching transmitter loop. The surveys were completed using both a 'slingram' configuration, with the receiver trailing the transmitter by 10m. | | | | Ground Gravity Surveys The ground gravity surveys were completed by Initial Exploration Services, Canada. The surveys were completed using a Scintrex Autograv CG-6 gravity meter. The surveys were completed along N-S orientated survey lines with a nominal 150m line spacing and 50m station spacing. | | Drilling
techniques | Drill type (eg core, reverse circulation, open-hole hammer,
rotary air blast, auger, Bangka, sonic, etc) and details (eg core
diameter, triple or standard tube, depth of diamond tails, face-
sampling bit or other type, whether core is oriented and if so, by
what method, etc). | Diamond drilling is completed by Top Rank Diamond Drilling using a Zinex A5 drilling rig Reverse Circulation drilling is completed by Northspan Explorations Ltd using a Hornet heli portable drilling rig. NQ2 diameter drill core is used in diamond drilling Downhole directional surveys are completed every 30m | | Drill sample
recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | Drill recoveries are recorded by the driller and verified by the logging geologist To minimise core loss in unconsolidated or weathered ground, split tubes are used until the ground becomes firm and acceptable core runs can be achieved No relationship has been determined between core recovery and grade and no sample bias is believed to exist | | Criteria | JORC Code explanation | Commentary | |---|--|--| | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | Detailed geological logging is carried out on all drill holes with lithology, alteration, mineralisation, structure, and veining recorded The logging is qualitive and quantitative The drill core is marked up and photographed wet and dry Representative RC chips are stored in chip trays 100% of all relevant intersections and lithologies are logged The level of detail is considered sufficient to support future mineral resource estimations, and mining and metallurgical studies | | Sub-sampling
techniques
and sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | The core is cut onsite into 1/2 along the length of the core for assay, qualitive analysis and metallurgical sampling RC samples are captured within a cyclone via a hose from the drill rig and then split through a riffle splitter for sample representivity. Quality control procedures include submission of Certified Reference Materials (standards), duplicates and blanks with each sample batch. QAQC results are routinely reviewed to identify and resolve any issues Sample preparation is completed at the laboratory. Samples are weighed, dried, crushed to better than 70% passing 2mm; sample was split with a riffle splitter and a split of up to 300g pulverised to better than 85% passing 75µm The sample sizes are considered to be appropriate to correctly represent base metal sulphide mineralisation and associated geology based on: the style of mineralisation (massive and disseminated sulphides), the thickness and consistency of the intersections and the sampling methodology | | Quality of
assay data and
laboratory
tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | Samples are assayed for Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, ,Tl, U, V, W, Zn using the ME-ICP61a method and the ME-OG62 secondary analysis for ore grade samples Sample are assayed for Au where appropriate using Fire Assay The assay method and detection limits are appropriate for analysis of the elements require Laboratory QAQC involves the use of internal lab
standards using certified reference material (CRMs), blanks and pulp duplicates as part of in-house procedures. The Company also submits a suite of CRMs, blanks and selects appropriate samples for duplicates | | Criteria | JORC Code explanation | Commentary | |---|---|---| | Verification of
sampling and
assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | Significant intersections are verified by the Company's technical staff and a suitably qualified Competent Person No twinned holes have been drilled or used Primary data is captured onto a laptop spreadsheet and includes geological logging, sample data and QA/QC information. This data, together with the assay data, is validated and entered into the American West Metals server in Perth, Australia No assay data is adjusted | | Location of
data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | A handheld global positioning system (GPS) is used to determine positioning for the FLEM, MLEM, TDEM, Gravity surveys, geochemical sampling points and all drill collar locations (within 5m). The grid system used is NAD83 / UTM zone 15N The handheld GPS has an accuracy greater than +/-5m for topographic and spatial control. Terrain and bouguer corrections were used in the processing of gravity data. | | Data spacing
and
distribution | Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | The drilling results in this report are not sufficient to establish the degree of geological and grade continuity to support the definition of Mineral Resource and Reserves and the classifications applied under the 2012 JORC code. No sample compositing has been applied. Weighted average grade calculations are used for drilling intercepts. The Storm FLEM loops were 1,000m by 1,000m, orientated to 0 degrees, and used stations spacings of 100m with 50m infills. The Storm MLEM loops are 100m x 100m, surveying complete with a N-S line direction, with a line spacing of 100m and station spacings of 50m. The Tempest TDEM surveys were completed with E-W lines with a 200m spacing, with 100m infills, and with a station spacing of 1.2m. The gravity surveys were completed along N-S orientated survey lines with a nominal 150m line spacing and 50m station spacing. The gravity 3D inversion was completed using a 40 x 40 x 20 mesh in VOXI. | | Criteria | JORC Code explanation | Commentary | |---|--|---| | Orientation of
data in
relation to
geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | The drill holes are designed to intersect the mineralised zones at a near perpendicular orientation (unless otherwise stated). However, the orientation of key structures may be locally variable and any relationship to mineralisation has yet to be identified No orientation-based sampling bias has been identified in the data to date. | | Sample
security | The measures taken to ensure sample security. | All drill core is handled by company personnel or suitable contractors All core cutting and handling follows documented procedures | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | No audits of the sampling protocol have yet been completed A review of the FLEM data was completed by Southern Geoscience Consultants (SGC) who considered to surveys to be effective for these styles of mineralisation. The TDEM data was obtained and processed by APEX Geoscience Ltd as an independent contractor and was subject to internal review and interpretation. | ### Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.) | Criteria | JORC Code explanation | Commentary | |--|--|---| | Mineral
tenement and
land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. | The
Nunavut property contains the Seal zinc-silver deposit and multiple copper showings, collectively known as the Storm copper prospect. The property comprises 134 contiguous mineral claims, 124 of which are named AB 1 to AB 82, AB 84 to AB 125 and 10 of which are named ASTON 1 to ASTON 10, as well as 12 prospecting permits, numbered P-12 to P-17 and P-26 to P-31. The total area covered by the project tenure is 414,537.9 ha. Aston Bay Ltd currently holds 100% interest in all mineral claims and prospecting permits. American West Metals Ltd has entered into an option agreement on the property with the potential to acquire an 80% interest. The Seal zinc-silver deposit lies within claim number AB 1 and the Storm copper prospect showings lie within claims AB 32, AB 33, AB 36 and AB 37. All tenements are in good standing. | | Exploration
done by other
parties | Acknowledgment and appraisal of exploration by other parties. | Exploration work in the areas around Aston Bay and the Storm property has been carried out intermittently since the 1960s. Most of the historical work at the Storm property was undertaken by, or on behalf of, Cominco. In 1966, Cominco conducted stream geochemical sampling with a sample density of 1 sample per 6.2 km², with three samples taken from the area around Seal showings. In 1970, J.C. Sproule and Associates Ltd conducted photogeological mapping, limited reconnaissance prospecting and stream sediment geochemical sampling. The geochemical survey included areas of the far eastern side of the current Storm property and returned some anomalous copper assay values. In 1973, Cominco conducted geological mapping, prospecting and soil sampling in the Aston Bay area as a follow-up to 1966 work. Anomalous soil and rock samples were described, with zinc values up to 5% in rubble at the main Seal showings. In 1974, Cominco conducted geological mapping, prospecting and soil sampling on the Aston Bay property (Seal showings) with 15 soil samples collected and analysed for zinc and lead. In 1978, Esso Minerals conducted prospecting, geological mapping, geochemical surveys and an airborne radiometric survey exploring for uranium mineralisation at Aston Bay. In 1993, Cominco conducted stream sediment geochemistry and prospecting in the Aston Bay area. In 1994, Cominco conducted various exploration activities, including detailed geological mapping on Seal Island and the North and South peninsulas of Aston Bay. A total of | | Criteria | JORC Code explanation | Commentary | |----------|-----------------------|---| | Criteria | JORC Code explanation | 168 line-km of induced polarisation (IP) and 62 line-km of gravity geophysical surveys were conducted on Seal Island and the North Peninsula. Soil geochemical sampling was conducted along the Seal Island and North Peninsula geophysical grids. Soil sampling, prospecting and mapping were done on the South Peninsula, with a total of 434 soil samples and 65 rock grab samples analysed, returning anomalous zinc grades >1% for some samples. Helicopter reconnaissance and heavy minerals sampling were conducted south of Aston Bay. In 1995, Cominco completed 14 DD holes (AB95-1 to AB95-14) on the North Peninsula for a total of 2,465.7 m. Drill intersections of up to 10.5% Zn and 28 g/t Ag over an 18 m core length were obtained for the Seal zinc-silver deposit. In 1996, Cominco completed 10 DD holes (AB96-15 to AB96-24), totalling 1,733.0 m on the North and South peninsulas. Best results were from the North Peninsula drill holes, including 1.8% Zn with 14 ppm Ag over 0.5 m in hole AB96-17 and 2.8% Zn, with 10 ppm Ag over 1 m and 2.2% Zn over 1 m in hole AB96-17. Cominco geologists discovered large chalcocite boulders in Ivor Creek, about 20 km east of Aston Bay, at the subsequently named 2750 Zone at the Storm copper showings. Copper mineralisation, hosted by Palaeozoic dolostone and limestone, was found over a 7 km structural trend. In 1997, Sander Geophysics Ltd, on behalf of Cominco, conducted a high-resolution aeromagnetic survey over a 5,000 km² area of northern Somerset Island. A total of 89 line-km of IP and 71.75 line-km of HLEM surveys were completed, and 536 soil samples were collected at the Storm copper showings. In addition, 17 DD holes, for a total of 2,784 m, were completed in the central graben area of the Storm zone. Assay highlights included 49.71% Cu over 4.8 m and 4.13% Cu over 1.4 m in hole ST97-02; 4.67% Cu over 4.8 m and 4.13% Cu over 1.4 m in hole ST97-03; and 14.62% Cu with 23.5 g/t Ag over 1.3 m and 4.41% Cu with 12.4 g/t Ag over 1.4 m in hole ST97-13. | | | | In 1999, Noranda Inc. (Noranda) entered into an option agreement with Cominco | | Criteria | JORC Code explanation | Commentary | |----------|-----------------------|---| | | | whereby Noranda could earn a 50% interest in the Storm property package (48 claims) by incurring exploration expenditures of \$7 million over a four-year period, commencing in 1999. An airborne hyperspectral survey completed by Noranda identified 26 airborne electromagnetic and magnetic (AEM/MAG) and 266 colour anomalies. In 2000, Noranda flew a 3,260 line-km GEOTEM electromagnetic and magnetic airborne geophysical survey over the property at 250–300 m line spacings. Ground geophysical surveys were carried out as a follow-up to the airborne surveys, including 100.5 line-km of UTEM, 69.2 line-km of gravity, 11 line-km of magnetics, and 6.5 line-km of HLEM surveys. Eleven DD holes, for a total of 1,885.5 m, were completed; eight of the holes, for a total of 1,348.5 m, were completed within the current Storm property, at the 4100N zone showing. In 2001, Noranda added the Aston Bay claims (7 claims) to the original
option agreement with Cominco. Reconnaissance follow-up work on selected airborne targets from the 1999 and 2000 airborne surveys was completed. Six DD holes, for a total of 822 m, were completed on the Seal zinc showings. Assay highlights for 2001 drilling include 7.65% Zn with 26.5 g/t Ag over 1.1 m in hole AB01-29. In 2008, Commander was issued prospecting permits 7547, 7548 and 7549, comprising the Storm property. Fieldwork included traversing geological contacts at the Seal 2200N, 2750N, and 4100N showings to evaluate the accuracy of previous mapping. Verification of historical drilling results was undertaken with core stored at the former Aston Bay camp site selectively sampled. Seven holes were sampled, including two from the Seal occurrence and five from the Storm copper showings. Duplicate analyses for the Storm holes corresponded well with original results. In 2011, Geotech Ltd, on behalf of Commander, conducted a helicopter-borne versatile time domain electromagnetic (VTEM plus) and aeromagnetic survey over the Storm property: a total of 3,969.7 line-km. The primary VTEM survey flight lines | | Criteria | JORC Code explanation | Commentary | |----------|---|---| | | | zinc and copper mineralisation at the Seal zinc and Storm copper showings, respectively, and their correlation with geophysical anomalies. In 2016, Aston Bay's exploration program comprised diamond drilling, borehole electromagnetic geophysical surveys, logging of historical drill core, prospecting, and soil sampling to provide broad, systematic coverage of the prospective geological units within the Aston Bay property. A total of 2,005 soil samples and 21 rock samples were collected. Twelve exploration diamond drill holes, totalling 1,951 m, were completed at the 2750N, 3600N and 4100N zones at the Storm prospect, and associated Tornado and Hurricane target areas. Downhole time-domain electromagnetic surveys were completed on 5 of the 12 drill holes, and 119 core samples were sent to Zonge International Inc. for petrophysical measurements. No drilling was conducted at the Seal zinc-silver deposit. In 2017, Aston Bay completed a surface geological reconnaissance program and undertook core review. A property-wide Falcon Plus airborne gravity gradiometry survey was also completed by CGG Multi-Physics, with over 14,672 line-km flown at a 200 m line spacing. A historical/foreign Mineral Resource Estimation by P&E Mining Consultants Inc. was initiated. In 2018, P&E Mining Consultants Inc., on behalf of Aston Bay, completed a historical/foreign Mineral Resource Estimate on the Seal zinc-silver deposit. The Seal zinc-silver deposit was estimated to contain 1.006 Mt at a grade of 10.24% Zn and 46.5 g/t Ag, using a 4.0% ZnEq cut-off. The estimate is based on diamond drilling conducted by Teck (previously Teck-Cominco) in 1995–96. | | Geology | Deposit type, geological setting and style of mineralisation. | The property contains two significant mineral showings: the Seal zinc-silver prospect in Ordovician mixed carbonate-siliciclastic rocks and the Storm copper prospect in Silurian shelf carbonate rocks. The Seal zinc-silver mineralised zone determined from outcrop and drill core observations is centred on a sandstone bed near the base of the Ship Point Formation. Dominant sulphides in the drill core and in surface expression are marcasite and pyrite. Iron sulphides appear to be replaced or intergrown with minor dark ('blackjack') sphalerite. The known mineralized zone at the Seal zinc-silver deposit extends for approximately 400 m along strike and is 50–100 m wide (Cook and Moreton, 2009); the true thickness of the mineralised zone appears to be approximately 20 m. The Storm copper mineralised zones all occur within the upper 80 m of the Allen Bay Formation and to a lesser extent in the basal Cape Storm Formation, and are referenced by their UTM (Universal Transverse Mercator) northings: 2200N, 2750N, 3500N and | | Criteria | JORC Code explanation | Commentary | |--------------------------------|---|--| | | | 4100N. The first three zones outcrop at surface whereas zone 4100N is blind, covered by a veneer of the Cape Storm Formation. The Storm copper sulphide mineralised zones examined in drill core occur within the zones of ferroan carbonate alteration and extend beyond them for at least a few metres. Copper sulphides and later copper carbonates occur within fractures and a variety of breccias, including most commonly crackle breccias as well as lesser in-situ replacive and apparent solution breccias, are present. Sulphides and copper oxides infill the fractures and form the matrix of breccias. Sulphides have sharp contacts with wall rock, both ferroan carbonates and unaltered dolostone. At the Storm copper prospect, chalcocite is the most common copper sulphide observed at surface and in drill core. | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | Historically drilling and significant intercepts have been independently compiled by Entech and can be found in the Independent Geologist's Report. Supporting drillhole information (easting, northing, elevation, dip, azimuth, down hole length) is supplied within Appendix E of the Independent Geologist's Report. All new drill hole data is tabulated as part of this announcement. | | Data
aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.
The assumptions used for any reporting of metal equivalent values should be clearly stated. | Historically significant intercepts have been independently compiled by Entech for the Independent Geologist's Report. Downhole weighted averaged were calculated using a minimum of 1% Copper over a 1 metre interval with exclusion of internal waste greater than 10 metres. True width was not calculated as the mineral asset is currently an exploration prospect without certainty on mineralisation orientation or geometry. No metal equivalents were utilised. | | Criteria | JORC Code explanation | Commentary | |---|---|---| | Relationship
between
mineralisation
widths and
intercept
lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). | All intervals are reported as down hole lengths. The geometry of the mineralisation with respect to the drill hole angle is not known and therefore downhole lengths were reported only. True widths are not known. | | Diagrams | Appropriate maps and sections (with scales) and tabulations of
intercepts should be included for any significant discovery being
reported These should include, but not be limited to a plan view
of drill hole collar locations and appropriate sectional views. | Relevant maps and sections are included as part of this release | | Balanced
reporting | Where comprehensive reporting of all Exploration Results is not
practicable, representative reporting of both low and high
grades and/or widths should be practiced to avoid misleading
reporting of Exploration Results. | All known explorations results have been reported Reports on other exploration activities at the project can be found in ASX Releases that are available on our website www.americanwestmetals.com | | Other
substantive
exploration
data | Other exploration data, if meaningful and material, should be
reported including (but not limited to): geological observations;
geophysical survey results; geochemical survey results; bulk
samples – size and method of treatment; metallurgical test
results; bulk density, groundwater, geotechnical and rock
characteristics; potential deleterious or contaminating
substances. | All material or meaningful data collected has been reported. | | Further work | The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | The 2023 exploration and resource definition activities have been highly successful and follow-up work will be completed during 2024. These activities will include resource expansion and further definition drilling, exploration drilling, geochemical sampling, surface electromagnetics, surface gravity, satellite and airborne remote sensing, downhole electromagnetics, mapping and reconnaissance. Resource estimation, mine development and metallurgical work is ongoing. |